If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5x^2-90x-400=0
a = -5; b = -90; c = -400;
Δ = b2-4ac
Δ = -902-4·(-5)·(-400)
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-10}{2*-5}=\frac{80}{-10} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+10}{2*-5}=\frac{100}{-10} =-10 $
| X-24=2x+18 | | 7x-11=36-3x | | A2-2a=35 | | x2-16x+-57.75=0 | | R2-4r=30 | | 7x+7=-11 | | 7n=-2n-5(-5) | | -5t^2+21t+120=20 | | 8a-4a=7+9 | | 5s-37=53 | | -4(-6x-4)+4x=3 | | 14/x=182/169 | | m-6.35=19.42 | | a3+5=15 | | 7y-20=2y-10y | | 25=5(c-89) | | -21.8=-2.6+w6 | | m+14/4=7 | | 7^x+3=65 | | 30=5(a-4) | | 5x+35-x=19 | | (9x-76)=103 | | b/5+43=47 | | 0.16666666666667t^2-9=0 | | q/4+15=22 | | h+17/6=4 | | (5x-15)=15 | | 16=25-3z | | 26^2=10^2+b^2 | | 4r-6=50 | | 7(d+2)=63 | | 3.2(x+4)+2x2+1.7(x-3)=27 |